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HYDRODYNAMIC POTENTIALS 
MICROPOLAR NAVlER-STOKES 

M. D. Martynenko and Murad Dimian 

FOR THE 
PROBLEM 

UDC 532.5:517.944 

An integral representation of linear and angular velocities and pressure for the description of linear 
stationary flows of micropolar viscous liquid media is obtained, and on its basis hydrodynamic potentials 
for the micropolar Navier-Stokes problem are introduced. 

The linear stationary Navier-Stokes problem is reduced to the solution Of the following system of 
differential equations [1 ]:' 

(u + a) Av + ~u + ;l - a) grad div v + 2a rot fJ - grad p = p f ,  (1) 

( v + f l )  A n + ( e + v - f l ) g r a d d i v f ~ + 2 a r o t v - 4 a ~ = p m ,  - d i v v = 0 ,  

or in matrix form: 

Here V is a column vector formed from the components of the vectors v, fJ and p; F is a column vector formed from 

pf, pro, and zero. The explicit form of the matrix A(O/Ox) is readily accessible from (1). 

The Lagrange conjugate to the system of equations (1) is as follows: 

O z + a )  A u +  ~ u + 2 - a )  g r a d d i v u - 2 a r o t t o - g r a d q = 0 ,  (3) 
(v+f l )  A ~ + ( e + v - f l ) g r a d d i v t a - 2 a r o t u - 4 a c o = 0 ,  - d i v u = 0 .  

We write it in matrix form as 

A'(0) ,4, 7xx U = 0 ,  

where U is a column vector formed from the components of the vectors u, o~ and q. System (1) differs from that 

presented in [1 ] by the notation for the constants. Namely, for symmetry in writing the equations in (1) the 

following notation is introduced: 

a = - 7 ,  e = 2 T ,  v = 0 + r / ,  f l = 0 - t / ,  (5) 

where 2,/z, ),, t/, T, and 0 are material parameters of the liquid medium [1 ]. 
For the operators A(O/Ox) and A*(O/Ox) introduced here the following relationship holds: 

U'A 0 V -  V'A* -~x U= ~ 0 i(R i - R ~ ) ,  (6) 
i=l 

where 

U' 0 
= (u 1 ,  u 2 ,  u3  , w 1 ,  o)2,  e9 3 ,  q ) ,  V = (v 1 ,  v 2, v 3, if2 t , ~ 2 ,  ~ 3 ,  P) ,  O i -  Ox i 

3 3 

Ri = E [ l~ i ]  + ~ ], Ri = E [viGil + Q]/Ai] ], 
]=1 /=1 

i = 1 , 3 .  
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ai] = ( -  p + )t div v) cSq + (.u + a)  O i v ] +  (ke - a )  O] v i - 2a  

/~i] = e d i v ~  6i] + (v + fl) 0 i Q ]  + (v - fl) O jQi ,  

3 

E ei jk~k,  
k=l 

(7) 

3 

ai]= (q + ;t div u) 6i] + (ke + a) 0 i u] + (,u - a) O] u i + 2a ~, eli k co k , 
k=l 

i] e div 0) tSi] + (v + t )  0 i w] + (v - t )  O] w i . 

From this the second Green formula follows for system (4): 

E ( 0 )  ( 0 ) ]  , . f U'A -~x V -  V'A* ~x U d r =  f ~, [u]an]+oJ]ken ] -  (Vjan]+n]#n]) ] a s ,  (8) 
D S ]=l 

where D is the region in three-dimensional Euclidean space bounded by the surface S; n(nl,  n2, n3) is the outer 

normal to S; On], ken] and an], keny are determined by the formulas 

3 3 3 3 
= , = ; * = * , ke* = ~* any ~ crfi n i r ~ ke]i ni any ~ Cryi ni n] ~ ]i ni" (9) 

i=1 i=l i=1 i=1 

We rewrite formula (8) in a different form by introducing the matrix of boundary stresses B(O/Ox, n): 

(o) .  1o> 
B ~ x '  n = II Bij tl i , j = ~ '  5-;x' n = II Bi] II i , y = ~ '  

where 

B7k = B7k = O, k = 1, 7 ; 

0 
Bi] (,u + a) ~n (5i] + (fl - a) n] Oi; Bi+3,]+ 3 = (v + t )  ~ ~.. = On l J + e n i O ] + ( v - f l )  n]Oi' 

3 
Bi,]+ 3 = ~, 2 a n k eli k ; Bi7 = - n i ; Bi+3, ] = Bi+3, 7 = 0 ; (11) 

k=I 

Bij = Bi] ; Bi+3,j+3 = Bi+3,j+ 3 ; Bid+3 = _ Bi,]+ 3 ; Bi 7 = _ Bi7 ; 

Bi+ad=Bi+3, 7 = 0 ,  i ,  ] =  1, 3.  

With account for (10) formula (8) takes the following form: 

[(0) (0)] [ ( 0 )  (~ ) 1  f U'A ~x V - V ' A *  -~x U d r =  f U'B 7 x '  n V - I / B *  7 x '  n U dS 
D S 

Using the Levi method [2 ] the matrix of fundamental solutions of system (1) can be constructed. Omitting 

intermediate calculations we present its final form: 

r (x) = II Fi 1 II i , j = ~ '  

where 

E ] ' [ 1 1 a exp ( -  af t)  8i] + Oi 
r i ] -  4at# r ke + a r ~ O] - -  

(13) 

v + / 3  e x p ( - a l r  ) -  1 ] 
- -  r �9 

2ke r ' 

1 exp ( -  aft) 1 
- d i ]  + Fi+3,J+3 4~ (v + t )  r ~ Oi Oj 

exp ( -  o z r  ) - exp (a it) exp ( -  o l r  ) -- 1 ] 

J ker 
) 

( 1 4 )  
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Fi+3,] = rid+3 = 8~/~ el] k ok - ; 
k=l r 

1 1 
r v = r,7 = _ ~ ~  

a)4a/~(v + fl)" 2 (r +4a2v)' V [ (  ~] r7,1+ 3 = r j + a ,  7 = 0 ;  a 2 = ~ u +  a 2 -  r =  
i=1 \ 

r 7 7 = - ~ u + a )  6(x) ,  i ,  i =  l ,  3 .  

The singular part of matrix (13) is as follows: 

r 0 (x) = [[ rOII i , j = ~ '  

where 

x:); 

o , [, 
- 6 q  + 3 ' F q = 8Jr (/a + a)  r r 

o 1 [ / 3 + e + 3 v 6 q + ( e - / 3 + v ) ~ ] ;  
Fi+a'y+3 = 8Jr (v +/3) (e + 2v) r 

r)O7 o _1 f / .  rO = r  o o 
"- r7'] - 4zc r 3 ' i+3,] i,]+3 = 0 ; r77 = - ~ -4- a )  6 ( x )  , i , ] = 1 ,  3 .  

0 
0 i = Ox i 

(15) 

(16) 

Direct computations show that at x ;e y the columns of the matrix F(x - y) defined by the expressions 

(13) and (14) are the solutions of the homogeneous system of equations (1) with respect to the variable x, whereas 

with respect to the variable y the columns are the solutions of the homogeneous conjugate system (3). It follows 
from expressions (16) that F ~ and F~ i, j -- 1-~ represent the tensor of singular solutions for the following linearized 

Navier-Stokes system: 

+ a) Av - g r adp  = p f ,  

At the same time, F~ ]+3, i, j - -  1,3 is the tensor of fundamental (singular) solutions of the system of equations 

div v -- 0 .  

and therefore, based on the usual considerations, we obtain from formula (12) the following integral representation 

of the regular solutions of system (1) within the region D [3, 4 ]: 

(v + fl) A~ + (e + v - / 3 )  grad div ~ = p m ,  ( ( 0 )  [ ( ) 
a (x) V (x) = fs F' (x - y) B ~y ,  n (y) V (y) - V' (y) B* OY'0 n(y)  

+ f r ( x - y )  F ( y ) d y v ,  
D 

r(x-y l},s + 

(17) 

where 

a ( x )  = 

1, x E D ,  

1 
~ ,  x ~ S ,  

O, x E D .  

Explicit integral representations for all components of the linear and angular velocity and the pressure can 
be obtained from formula (17) using ordinary matrix multiplication procedures. This formula provides a basis for 
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introducing the hydrodynamic micropolar potentials of the bulk, single, and double layers (the surface integrals 

and the volume integral in (17) are such; the latter should be considered to be a volume hydrodynamic micropolar 

potential). In addition, formula (17) makes it possible to write out the boundary conditions for a numerical- 

analytical solution of the basic boundary-value problems for system (1) when either the components of the vectors 

of linear and angular velocity or the moment and force stresses or various combinations of them are specified on 

the boundary of the region. 
In conclusion, it should be noted that formula (17) contains as a specia ! case well-known results of the 

classical Navier-Stokes problem [4, 5 ]. 

N O T A T I O N  

ai/,/*i], components of tensors of force and moment stresses; V(Vl, v2, V3), ~'~ (Q1, •2, ~')3), vectors of linear 

and angular velocity; p, pressure; p, density; fill,  f2, f3), m(ml ,m2, m3), spatially distributed forces and moments; 

2,/~, r/, 3, 0, ~, material parameters of the liquid medium (coefficients of volume, shear, and rotational viscosity, and 

a measure of the bonding of a liquid particle with its surroundings); 6i/, Kronecker symbol; eli,t, Levi-Civita symbol; 
3 

6(x - y), Dirac delta function; X(Xl, x2, x3), point of three-dimensional space; r = (X=tx i - yi)2)l/2, distance between 

3 
the points X ( X l ,  X2, X3) and Y(Yl, Y2, Y3); A = Z 0i 2, Laplace operator; O i = O/OXi,  0/2 = 02/0X2i ,  OiO ] = 02/OXiC)x]. 

i=l  
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